Deep Text Classification Can be Fooled
نویسندگان
چکیده
Deep neural networks (DNNs) play a key role in many applications. Current studies focus on crafting adversarial samples against DNN-based image classifiers by introducing some imperceptible perturbations to the input. However, DNNs for natural language processing have not got the attention they deserve. In fact, the existing perturbation algorithms for images cannot be directly applied to text. This paper presents a simple but effective method to attack DNN-based text classifiers. Three perturbation strategies, namely insertion, modification, and removal, are designed to generate an adversarial sample for a given text. By computing the cost gradients, what should be inserted, modified or removed, where to insert and how to modify are determined effectively. The experimental results show that the adversarial samples generated by our method can successfully fool a state-of-the-art model to misclassify them as any desirable classes without compromising their utilities. At the same time, the introduced perturbations are difficult to be perceived. Our study demonstrates that DNN-based text classifiers are also prone to the adversarial sample attack.
منابع مشابه
Topic Modeling and Classification of Cyberspace Papers Using Text Mining
The global cyberspace networks provide individuals with platforms to can interact, exchange ideas, share information, provide social support, conduct business, create artistic media, play games, engage in political discussions, and many more. The term cyberspace has become a conventional means to describe anything associated with the Internet and the diverse Internet culture. In fact, cyberspac...
متن کاملA Method for Restoring the Training Set Distribution in an Image Classifier
Convolutional Neural Networks are a well-known staple of modern image classification. However, it can be difficult to assess the quality and robustness of such models. Deep models are known to perform well on a given training and estimation set, but can easily be fooled by data that is specifically generated for the purpose. It has been shown that one can produce an artificial example that does...
متن کاملA New Document Embedding Method for News Classification
Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...
متن کاملSafer Classification by Synthesis
The discriminative approach to classification using deep neural networks has become the de-facto standard in various fields. Complementing recent reservations about safety against adversarial examples, we show that conventional discriminative methods can easily be fooled to provide incorrect labels with very high confidence to out of distribution examples. We posit that a generative approach is...
متن کاملAn Improvement in Support Vector Machines Algorithm with Imperialism Competitive Algorithm for Text Documents Classification
Due to the exponential growth of electronic texts, their organization and management requires a tool to provide information and data in search of users in the shortest possible time. Thus, classification methods have become very important in recent years. In natural language processing and especially text processing, one of the most basic tasks is automatic text classification. Moreover, text ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1704.08006 شماره
صفحات -
تاریخ انتشار 2017